
1

Using the new TLM-2.0 Standard
for the Creation of Virtual Platforms for ESL Design

Dr. Tim Kogel

Office of the CTO

CoWare, Inc.

2

2

OverviewOverview

MP-SoC Trends and Challenges

ESL Design Solutions
– Design Tasks and Requirements

– Enabling technologies

3

3

Wireless connectivity
anytime, anywhere

High definition
Imaging anywhere

Device
convergence

HW Centric
Local memory subsystem
Local, shared bus
Single processor
Single SW stack

SW and HW Centric
Complex memory hierarchy
Intelligent interconnect (NoC)
Multiple processor
Multiple, dependent SW stacks

Design TrendsDesign Trends

Multi-functional
picture printer

Smart
phone

Multi-media
digital TV

Multi-media
PC

Multi-media
access

Gaming

Automotive
Infotainment

4

4

Transition from ASIC to MPSoCTransition from ASIC to MPSoC

Complex ASIC

• High Definition
• Convergence
• Wireless Everywhere

SW Driven Design

• Exploding SW content?
• Higher clock frequency?
• Increased memory?

ASIC Cost

Power

Multi Core SoC

• Portable devices?

Energy
Efficiency

MP-SoC

FPGAFPGAPeriph eMEMMEM

DSP

I/O I/OI/O

CPU
Custom

DSP

5

5

Design ChallengesDesign Challenges

Source:

24% of projects canceled due to schedule slip
54% of SW designs completed behind schedule
33% of devices miss functionality/performance
80% of effort to correct errors discovered late

System Architecture Design
Project Management

Board-level engineering
Firmware development

System integration
Application development

SoC design/verification
OS development
Algorithm design

Top issues

Architecture
Software

Integration

6

6

MP-SoC Design Flow ChallengesMP-SoC Design Flow Challenges

Paper
spec.

Software dev.

Bring-up Sys. test

P
R
O
D
U
C
T

Documentation

Marketing Marketing

Manufacturing

Maintenance

Support

Feedback to supplier ecosystem

Delivery to partner ecosystem

Customer Development
Customer

requirements

LayoutLogicSoC RTLIP RTL

RTL
sign-off

Logic
sign-off

HW re-use
sign-off

Arch.
design

Asm

OS, Objects
Components

Assembler, Linker, Loader

Compiler, IDE

SW API

Seq. language

SW re-use
and UML

SW stacks

Hardware design

Multi-
core

7

7

Solution: ESL DesignSolution: ESL Design

Paper
spec.

Software dev.

Bring-up Sys. test

Documentation

Marketing Marketing

P
R
O
D
U
C
T

Manufacturing

Maintenance

Support

Feedback to supplier ecosystem

Delivery to partner ecosystem

Customer Development
Customer

requirements

Arch.
design

Bring-
up

Sys.
test

Marketing

Customer Engagements: Requirements –Validation – Development - Support

Early
Design
Wins

Increased
Productivity
Predictability
Quality

… with virtual platforms
Concurrent
design

Continuous
integration

Hardware design

8

8

OverviewOverview

MP-SoC Trends and Challenges

ESL Design Solutions
– Design Tasks and Requirements

– Enabling technologies

9

9

Need virtual platforms for …Need virtual platforms for …

Multi-layer
fabric

RAM
(Program &

Data)

DMA
Controller

DDR
Controller

Video
Subsystem

Processor
Core(s)

Bus
Controller

EthernetI2C

GPIO

Smart
Card

Display
Controller

Interrupt
Controller In

te
rc

o
n

n
ec

t

External DDR

SRAM/FLASH/ROM

UART

Timer

Real Time
Clock

Watchdog
Timer

Bridge

DSP
Core(s)

Programmable
Accelerator

WWWSerial

Display

DVB-T

Controller

Analog
Front End

Platform Architecture
Design

Performance
Validation

Application Sub-
Systems Design

S
o

ftw
are D

evelo
p

m
en

t T
o

o
ls

Software
Development

Firmware

Operating
Systems &

Applications

DSP
firmware &
applications

See also: OSCI TLM-2 Requirements,
Section 2 "Definition of TLM Use-Cases“
http://www.systemc.org/downloads/drafts_review/

In
te

rc
o

n
n

ec
t

10

10

Requirements
– Sufficient simulation speed (10-50% real-time)

– Functional completeness and register accuracy

– Timing accuracy: software synchronization

– Controllability and observability

– Integration with Software IDEs

– External connectivity

Software Application DevelopmentSoftware Application Development

SystemC Virtual Platform

Software Debugger Virtual Platform Analyzer Keypad/Display Device

Console

11

11

Requirements
– Sufficient simulation speed (1-10% real-time)

– Functional completeness and register accuracy

– Timing accuracy: 80% (interval: ~100k cycles)

– Hardware and software performance analysis views

– External connectivity

Software Performance AnalysisSoftware Performance Analysis

SystemC Virtual Platform

Software Performance Analysis

Hardware Performance Analysis

12

12

Architecture AnalysisArchitecture Analysis

SystemC Virtual Platform

Workload modeling options:
– Trace-driven File Reader Bus Master
– Task-graph driven Virtual Processing Unit

Hardware Performance Analysis

Requirements
– Sufficient simulation speed (100-1000 x RTL)

– Cycle-accurate models of critical components
• Interconnect, memory subsystem

– Same level of configurability as real IP

– Timing accuracy: 95% (interval: 1-10 cycles)

– Hardware performance analysis views

13

13

Example: Performance ValidationExample: Performance Validation

SystemC Virtual Platform

Software Performance Analysis

Hardware Performance Analysis

Requirements
– Sufficient simulation speed (50-500 x RTL)

– Cycle-accurate models of critical components
• Processor, interconnect, memory subsystem

– Functional completeness and register accuracy

– Timing accuracy: 95% (interval: 1-10 cycles)

– Hardware and software performance analysis views

14

14

OverviewOverview

MP-SoC Trends and Challenges

ESL Design Solutions
– Design Tasks and Requirements

– Enabling technologies

15

15

OutlineOutline

TLM-2.0 Standard Overview
– Concepts and APIs

– The Loosely Timed Modeling Style

– The Approximately Timed Modeling Style

Effective Creation of TLM-2.0 Peripheral Models

Creating TLM-2.0 based Virtual Platforms

16

16 16

OSCI TLM WGOSCI TLM WG

120 individuals from 27 organizations

~20 individuals from ~17 organizations participate
regularly in weekly 2-hour teleconference

Source: OSCI SystemC Community Update, DATE 2007

17

17

TLM Use-Cases

SW Application
Development

SW Performance
Analysis

TLM-2.0 Modeling Styles

Loosely-timed

TLM-2.0 Mechanisms

Performance
Validation

Architecture
Analysis

Blocking
interface

DMI Quantum Sockets
Generic
payload

Extensions Phases
Non-blocking

interface

Approximately-timed

TLM-2.0 OverviewTLM-2.0 Overview

Single-phase, blocking API

Multi-phase, non-blocking API

18

18

Generic PayloadGeneric Payload
Typical set of memory mapped bus attributes

command : enum, READ, WRITE, IGNORE
address : uint64, byte address
data : unsigned char*, pointer to storage
length : unsigned int, number of bytes in the data array
byte_enable : unsigned char*, species sub-word accesses
byte_enable_length : unsigned int, number of elements in byte_enable
streaming_width : unsigned int, defines a streaming burst
response_status : enum, INCOMPLETE, OK, ERROR-code

Extension mechanism
– Array of pointers to user defined payload extensions
– Defines rules for ignorable and mandatory extensions

Memory Management
– Reference counting mechanism
– Mandatory for AT, optional for LT

Helper functions for endianness conversion

19

19

TLM Use-Cases

SW Application
Development

SW Performance
Analysis

TLM-2.0 Modeling Styles

Loosely-timed

TLM-2.0 Mechanisms

Performance
Validation

Architecture
Analysis

Blocking
interface

DMI Quantum Sockets
Generic
payload

Extensions Phases
Non-blocking

interface

Approximately-timed

TLM-2.0 OverviewTLM-2.0 Overview

Single-phase, blocking API

Multi-phase, non-blocking API

20

20

Blocking TransportBlocking Transport

tlm_blocking_transport_if {
void b_transport (TRANS& trans ,

sc_core::sc_time& t);
};

InitiatorInitiator Interconnect
component

Interconnect
component TargetTarget

Initiator
port

Target
port

Initiator
port

Target
port

b_transport b_transport

Sources: OSCI and CoWare (adapted from the TLM-2 Draft 2 manual)

Simple API, support for timing annotation,
addressing all SW related ESL Design tasks

21

21

Blocking TransportBlocking Transport
Initiator Target

b_transport(trans,0)Call

Simulation time = 100ns

Return
Simulation time = 110ns

Initiator is blocked until return from b_transport

wait(10ns)

22

22

Loosely-timed with Timing AnnotationLoosely-timed with Timing Annotation

Initiator Target

Local time

b_transport(trans,10ns)Return

+10ns

b_transport(trans,0ns)Call

+0ns

Transaction completed immediately with timing annotation

sc_time parameter
as specified by initiator

updated sc_time parameter
as specified by target

Simulation time = 1000ns

23

23

tS1 tS2tS0

Instruction 1 Instruction 4Instruction 2 Instruction 3 Instruction 7Instruction 5 Instruction 6 Instruction 8 Instruction 9

Clock
period tcSynchronization points

...

Temporal DecouplingTemporal Decoupling
Clock-driven Modeling Style

Instruction 1 Instruction 4Instruction 2 Instruction 3 Instruction 7Instruction 5 Instruction 6 Instruction 8 Instruction 9

"Global Quantum"

Synchronization points

Loosely Timed Modeling Style

b_transport(trans, 3tc) b_transport(trans, 2tc)

24

24

The Time QuantumThe Time Quantum

Initiator Target

Local time

b_transport(trans,0ns)

Call

+0ns

b_transport(trans,15ns)Return

+15ns

Simulation time = 5us

b_transport(trans,995ns)

Call

+995ns

b_transport(trans,1005ns)Return

+1005ns

Quantum = 1us

Simulation time = 6.005us

wait(1005ns)

Initiator waits when local time exceeds the quantum

25

25

Instruction 1 Instruction 4Instruction 2 Instruction 3 Instruction 7Instruction 5 Instruction 6 Instruction 8 Instruction 9

b_transport without synchronization

"Global Quantum"

b_transport with synchronization

SystemC kernel

IA ISSSW Task 1

SW Task 2

Object file

Cross-
Compiler

load

RTOS

DMA

ITC

Data

IRQ

bus

"Synchronization on Demand""Synchronization on Demand"

Synchronization points

26

26

Temporal Decoupling with SynchronizationTemporal Decoupling with Synchronization

Initiator Target

Local time
b_transport(trans,570ns)Call

+570ns

Simulation time = 5us

b_transport(trans,0ns)Return

Simulation time = 5.58us
wait(570+10ns)

b_transport(trans,20ns)Call
+20ns

b_transport(trans,35ns)Return

+35ns

+0ns

27

27

Fast DMI access

b_transport access

Target

storage

timing

behavior

Initiator/
IA-ISS

LT busstorage

timing

behavior

Direct Memory InterfaceDirect Memory Interface

28

28

transport_dbg access

Target

storage

timing

behavior

Initiator/
IA-ISS

LT busstorage

timing

behavior

Debug TransportDebug Transport

29

29

TLM Use-Cases

SW Application
Development

SW Performance
Analysis

TLM-2.0 Modeling Styles

Loosely-timed

TLM-2.0 Mechanisms

Performance
Validation

Architecture
Analysis

Blocking
interface

DMI Quantum Sockets
Generic
payload

Extensions Phases
Non-blocking

interface

Approximately-timed

TLM-2.0 OverviewTLM-2.0 Overview

Single-phase, blocking API

Multi-phase, non-blocking API

30

30

Non-Blocking TransportNon-Blocking Transport

InitiatorInitiator Interconnect
component

Interconnect
component TargetTarget

Initiator
socket

Target
socket

Initiator
socket

Target
socket

nb_transport_fw nb_transport_fw

nb_transport_bw nb_transport_bw

template < typename TRANS = tlm_generic_payload,
typename PHASE = tlm_phase>

class tlm_fw_nonblocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual tlm_sync_enum nb_transport(TRANS& trans,
PHASE& phase,
sc_core::sc_time& t) = 0;

};

31

31

Approximately-timed Timing ParametersApproximately-timed Timing Parameters

Initiator Target

BEGIN_REQ

BEGIN_REQ must wait for previous END_REQ, BEGIN_RESP for END_RESP

END_RESP

Response accept delay

END_REQ

Request accept delay

BEGIN_RESP

Latency of target

TLM 2.0 Base Protocol

32

32

Mapping AT to Real Bus ProtocolsMapping AT to Real Bus Protocols

Timing of the AHB Initiator Protocol

REQ A

RSP A RSP B

REQ B

33

33

What are the Limitations?What are the Limitations?

Goal of Base Protocol:
– Mimic performance of real IP with generic AT models
– Bridge TLM-2.0 with protocol-specific CA models

Limitations:
– Base Protocol does not represent the specifics of all

protocols
– E.g. no out-of-order transactions, no interleaving of bursts

Strategy for refinement
– Use TLM-2.0 extension mechanism for payload and phases

to enhance accuracy
– Owners of standard protocols (ARM, OCP-IP) are expected

to define protocol specific TLM-2.0 extension kits

34

34

TargetInitiator

TLM-2.0 Standard SocketsTLM-2.0 Standard Sockets

b_transport

nb_transport_fw

get_direct_mem_ptr

dbg_transport

tlm_initiator_socket tlm_target_socket

nb_transport_bw

invalidate_direct_mem_ptr

Targets are obliged
to implement
blocking and non-
blocking interface

Initiators can
choose to
use the
blocking or
the non-
blocking
interface

35

35

LT-TargetAT-Initiator

"Simple" TLM-2.0 Utility Sockets"Simple" TLM-2.0 Utility Sockets

nb_transport_fw

get_direct_mem_ptr

dbg_transport

nb_transport_bw

invalidate_dmi_ptr

b_transport

nb_transport_bw

simple_initiator_socket simple_target_socket

Targets
implements
only blocking
interface

Socket converts
non-blocking calls
into blocking calls

Socket implements
debug and DMI
calls

36

36

TLM-2.0 Model InteroperabilityTLM-2.0 Model Interoperability

Bus Infrastructure

TLM-2.0 Interoperability API

Specific for
• abstraction level
• ESL tool vendor
• IP provider

TargetInitiator

37

37

OutlineOutline

TLM-2.0 Standard Overview

Effective Creation of TLM-2.0 Peripheral Models
– ... using the CoWare SystemC Modeling Library

Creating TLM-2.0 based Virtual Platforms

38

38

CoWare's SCML MethodologyCoWare's SCML Methodology

Maximize code reuse through orthogonalization

OCP, AMBA, CoreConnect, …

Bus interface
(re-target communication to protocol)

Address, access size, burst, …
Read/write ahead buffer, …

Register interface
(re-target algorithm to platform)

Behavior
(re-usable algorithm)

Algorithm, Timer, DMA, …

39

39

Target

SCML memory

SCML MemorySCML Memory

b_transport

nb_transport_fw

get_direct_mem_ptr

dbg_transport

nb_transport_bw

invalidate_direct_mem_ptr

dbg_transport peeks
and pokes into memory

DMI returns pointer to
storage

Memory behavior as
default implementation
of b_ and nb_transport

Static timing annotation for
default implementation of
DMI, LT, and AT

40

40

Target

SCML memory

SCML MemorySCML Memory

b_transport

nb_transport_fw

get_direct_mem_ptr

dbg_transport

nb_transport_bw

invalidate_direct_mem_ptr

behavior

Override default behavior
for register access

Dynamic timing annotation
as part of user-defined
behavior

41

41

Re-using TLM Peripheral ModelsRe-using TLM Peripheral Models

Target

storage behavior

Initiator/
Instruction

Set Simulator

storage

Direct Memory access

behavior

CA TLM Bus Library

CA bus Trans-
actor

Trans-
actor

LT/AT bus

TLM2.0 is coding style and abstraction level agnostic
Separation of behavior, communication and timing
Re-use TLM peripheral models for multiple design tasks
Modular and compositional modeling of timing
Supported by standards based SystemC Modeling Library

42

42

OutlineOutline

TLM-2.0 Standard Overview

Effective Creation of TLM-2.0 Peripheral Models

Creating TLM-2.0 based Virtual Platforms
– Loosely Timed virtual platforms for software development

– Approximately Timed virtual platforms for architecture design

43

43

TLM Use-Cases

SW Application
Development

SW Performance
Analysis

TLM-2.0 Modeling Styles

Loosely-timed

TLM-2.0 Mechanisms

Performance
Validation

Architecture
Analysis

Blocking
interface

DMI Quantum Sockets
Generic
payload

Extensions Phases
Non-blocking

interface

Approximately-timed

TLM-2.0 OverviewTLM-2.0 Overview

Single-phase, blocking API

Multi-phase, non-blocking API

44

44

ESL Design ToolsESL Design Tools

TCL
Script
instatiate_block Lib::DMA DMA
connect DMA.pAHB iAHB_n1
set_target_address DMA
0x1001000

SystemC
Simulation

Model
Library

User
SystemC
Blocks

Platform Architect
(GUI and/or Script Mode

Analysis

SystemC Debug

Embedded SW
Debug

Scripting enables
automated exploration
and anaylsis of
multiple scenarios.

Model Wizard

45

45

CoWare EcosystemCoWare Ecosystem

Arteris

StandardsStandardsStandards

TrainingTrainingTraining

ewfieldewfield

ESW

DSP Tools

EDA and FPGA

Services

IP

46

46

Software Application DevelopmentSoftware Application Development

SDRAM

LCDD
M

I/L
T

 b
us

IA ISS

core

SystemC TLM-2.0 based Virtual Platform

IA ISS

core

Uart

Software Debugger Virtual Platform Analyzer Keypad/Display Device

Console

Requirements
– Sufficient simulation speed (10-50% real-time)

– Functional completeness and register accuracy

– Timing accuracy: software synchronization

– Controllability and observability

– Integration with Software IDEs

– External connectivity

47

47

L2Cache

Software Performance AnalysisSoftware Performance Analysis

SDRAM

LCDLT
/A

T
 b

us

IA ISS

core
L1Cache

SystemC TLM-2.0 based Virtual Platform

IA ISS

core
L1Cache

Uart

Software Performance Analysis

Hardware Performance Analysis

Requirements
– Sufficient simulation speed (1-10% real-time)

– Functional completeness and register accuracy

– Timing accuracy: 80% (interval: ~100k cycles)

– Hardware and software performance analysis views

– External connectivity

48

48

A Real SystemC based TLM PlatformA Real SystemC based TLM Platform
Results based on CoWare's pre-TLM-2.0 SystemC TLM Environment

Platform originally modeled at PV for Application SW Development
– 55 unique models (95 instances)

– Runs the actual, unmodified software for the phone

Updated platform reuses TLM peripheral models with timing
information in the memory sub-system for SW Performance Analysis

– 4 models within memory sub-system enabled with timing annotation

Silicon
CoWare VP

(at PV)
CoWare VP
(w/ PV+T)

Phone OS
Booted 2 sec 20 sec 31 sec

GSM Network
Registration 8 sec 66 sec 476 sec

Idle execution 1x 3.5x 3.5x

Accuracy 100% 50% 85-99%

49

49

Architecture AnalysisArchitecture Analysis

SDRAM

A
T

/C
A

 b
us

SystemC TLM-2.0 based Virtual Platform

X
T
O
R

X
T
O
R

X
T
O
R

X
T
O
R

Using partial virtual platforms and non-
functional workload models

– Reduced effort to capture platform
– Requires profiling information,

but porting of real SW not required
– Ideal for performance optimization of

SoC backbone (interconnect/memory)

Workload modeling options:
– Trace-driven File Reader Bus Master
– Task-graph driven Virtual Processing Unit

Workload Model

~

Workload Model

~

Workload Model

~

Hardware Performance Analysis

Requirements
– Sufficient simulation speed (100-1000 x RTL)

– Cycle-accurate models of critical components
• Interconnect, memory subsystem

– Same level of configurability as real IP

– Timing accuracy: 95% (interval: 1-10 cycles)

– Hardware performance analysis views

50

50

Example: NXPExample: NXP

CoWare pre-TLM-2.0 SystemC environment

X
T
O
R

X
T
O
R

CPU ~ Hardware Performance Analysis

X
T
O
R

RTL
SDRAM

X
T
O
R

C
A

 b
us

Bus width?
Clock period?

Topology?
Arbitration?

X
T
O
R

Camera ~
X
T
O
R

Rendering
Engine ~

X
T
O
R

LCD ~

Performance?
Cost?

Efficiency?

Bus width? Number of ports?
Low latency vs. High bandwidth ports?
Buffering? Number of access beats?

51

51

SystemC TLM-2.0 based Virtual Platform

L2Cache

Performance ValidationPerformance Validation

SDRAM

LCDC
A

 b
us

CA ISS

core
L1Cache

CA ISS

core
L1Cache

Uart

X
T
O
R

X
T
O
R

X
T
O
R

X
T
O
R

X
T
O
R

X
T
O
R

Using complete virtual platforms and
cycle-accurate ISSes running real SW

– Realistic performance results from
execution of real SW

– Modeling effort of cycle-accurate IP can be
mitigated by means of RTL co-simulation,
Co-emulation, or synthesis of fast
SystemC models from RTL using Carbon

Software Performance Analysis

Hardware Performance Analysis

Requirements
– Sufficient simulation speed (50-500 x RTL)

– Cycle-accurate models of critical components
• Processor, interconnect, memory subsystem

– Functional completeness and register accuracy

– Timing accuracy: 95% (interval: 1-10 cycles)

– Hardware and software performance analysis views

52

52

SummarySummary

Well defined Use-cases, Modeling Styles, and TLM APIs
– Model interoperability

⇒Model availability

High speed simulation for SystemC based Virtual Platforms
– Temporal decoupling, Direct Memory Interface, synchronization on

demand

Model re-use for multiple ESL design tasks
– LT models interoperate with and can be refined to AT models

– LT and AT models can be connected to cycle accurate models by
means of transactors

What does TLM-2.0 enable for ESL Users?

53

53

Thank You!

